
December 1, 2008

IAT 334
D101, Team 1

Evan Miller
Andrew Nip
Nathan Waddington
Shanna Walters

Gestural and Tangible Prototyping Tool
 CATGames Developer Interface

Table of Contents

1.0 GENERAL INFORMATION
 1.1 Purpose
 1.2 Project References
 1.3 Terms and Abbreviations

2.0 SYSTEM CHARACTERISTICS
 2.1 System Architecture
 2.2 Tasks
 2.3 Design Specifications
 2.4 Wireframes

3.0 TECHNICAL SPECIFICATION
 3.1 End Users
 3.2 Development

4.0 SECURITY
 4.1 Control Points
 4.2 Vulnerabilities
 4.3 Safeguards

1
1
2

4
5
5
8

20
20

21
21
21

1.0 General Information

1.1 Purpose

The team is building a system that works with the Gestural and Tangible Prototyping system
(part of the CATGames project), which interfaces between game designers and programmers
and a physical prototyping system. This is particularly challenging as the Gestural and Tangible
Prototyping tool is a collection of physical objects all of which have their own specific properties
that need to be interfaced with in an intuitive manner. As the people we are targeting as an
audience tend to be very time-constrained and may not be willing to spend the time to discover
the functionality in the system it’s particularly important to make sure the system can be
understood and used rapidly.

Interface Prototype can be found at http://www.sfu.ca/~eam1/Interface.html

1.2 Project References

CATGames. (n.d.). CATGames: Creativity | Assistive | Tools. Retrieved September 18, 2008 from
 http://www.catgames.ca.

Gestural and Tangible Prototyping. Retrieved September 18, 2008 from http://wiki.iat.sfu.ca/
 CATGames/index.php/Gesture_and_Tangible_Prototyping.

Shaer, Orit et. al. (2004). The TAC Paradigm: specifying tangible user interfaces. Pers Ubiquit
 Comput, 8, 359-369

Wakkary, Ron and Marek Hatala. (2007). Situated play in a tangible interface and adaptive audio
 museum guide. Pers Ubiquit Comput, 11, 171-191.

1

1.3 Terms and Abbreviations

CATGames: Creativity Assistive Tools for Games Network; a research network consisting of The
University of Western Ontario, Simon Fraser University, Credo Interactive, with Seneca College as
the host organization. Its vision is to create innovative, leading edge technology tools for game
production that support Canada’s burgeoning games industry by accelerating the creative process,
and expanding and enriching content environments and platforms. (CATGames Proposal, 2007)

Input Devices: A variety of items that can be used for rapid prototyping.

Load: This option allows users to load a previously saved file so that they are able to continue the
editing process of creating rapid prototyping

New: This enables the user to create a new file to create new rules and games to be rapidly
prototyped.

Object(s): Items that can be used by the rapid prototyping interface to measure the various
properties (see below) to create new games.

Operators: these operators help users define whether rules and/or inputs are combined to reach a
specific outcome.
 - and; This enables the user to combine rules to meet a specific outcome.
 - or; This enables the user to establish an output action if one of multiple rules are met.
 - not; This enables the user to establish an output action if one of multiple rules is not met
 - xor; “and or”; This enables the user to establish an output action if one or more rules are met.

Outcome: A means for users to establish messages/outputs to indicate to players whether specific
rules or criteria are met for games.

Output Devices: A variety of items that can produce messages and outputs to communicate to
users based on rules created. Output devices may include (but not exclusive to) audio, video or
screen.

Properties:

 - acceleration; Measures the change in speed of the object(s) over distance.
 - bounces; Records the number of bounces of the object(s).
 - face value; Determines the face of the object(s) that is facing up.

2

- orientation; Measures the X, Y, Z axis rotation of the object(s). If die/dice are being used, if 6 is
 up, then 1 is down, but which way are 2, 3, 4 & 5 facing?
- position; Measures the X, Y, Z axis coordinates of the object(s). Position in space.
- velocity; Measures the speed of the object(s).

Rule:

 * success
 * failure

Save: Enables the user to save the current work file and reopen and edit this at a later time.

3

CA
TG

am
es

 R
ap

id
 P

ro
to

ty
pi

ng
 T

oo
l I

nt
er

fa
ce

G
am

e
De

ve
lo

pe
rs

Pr
og

ra
m

m
er

s

De
si

gn
er

s

W
or

ks
pa

ce
Ru

le
s

In
pu

ts
Pr

op
er

tie
s

Ac
ce

le
ra

tio
n

Bo
un

ce
s

Fa
ce

 V
al

ue

O
rie

nt
at

io
n

Po
si

tio
n

Ve
lo

ci
ty

Su
cc

es
s

Fa
ilu

re

Bo
ol

ea
n

op
er

at
or

s
An

d N
ot

O
r

Xo
r

O
ut

co
m

e
O

ut
pu

ts

Pr
op

er
tie

s
M

es
sa

ge

Im
ag

e

In
pu

t
De

vi
ce

s

O
ut

pu
t

De
vi

ce
s

G
am

e
M

et
a

Da
ta

Fi
le

s
N

ew

Lo
ad

Sa
ve

Se
cu

rit
y

H
el

p
Sy

st
em

To
ol

 T
ip

s

Pl
ay

er
s

2.0 System Characteristics

2.1 System Architecture

4

2.2 Tasks

1. Check for Snake Eyes and output text when the outcome occurs.
2. Create a Hot Potato Game.
3. Test for doubles and create different output text for when the outcome occurs and when it does
not.

2.3 Design Specifications

Design Template:

5

Color Usage:

Calibri

Outcome box and Input and Output Menus Bars

‘AND’ and ‘Success’ Connector Color

‘NOT’ and ‘Failure’ Connector Color

‘XOR’ (Exclusive Or) Connector Color

‘OR’ Connector Color

Outlines and Text

Font Usage:

Interactive Highlight Outline Cue

Workspace Color

Rule Box Color

Rule Box Highlight Color

Inputs, Properties, Conditions boxes and Grid Lines

Dice Icons

Screen Icons

Style Guide

6

Design Template:

1. Work area; shows any objects which have been placed. This is where all of the relationships between
objects are shown.
2. Input devices; tangible inputs connected to the system (these need not only be dice, nearly any object
with the appropriate sensors could be connected by the developers).
3. Output device; tangible outputs connected to the system (these need not only be screens, these could
also be things such as speakers, motors, force feedback systems, etc.).
4. Rules; game based conditions which rely on Inputs, Properties and Operators (as well as other Rules in
some cases) to establish the game play.
5. Outcomes; when a Rule’s condition is met (or not met), then an outcome occurs, these rely on Outputs,
Properties and Operators (as well as Rules) to determine how information is relayed to the player.
6. Meta-data; this is where developers can name games
7. File control; this is where developers can save, load, and create new games. Version control is available
through this area.
8. Boolean operators (condition checks); boolean operators determine how rules interact with each other.
This allows for complex games to be created and tested.
9. Rule output links (true/false, pos/neg); The Rule Output Links are what control how the Outcomes
behave, if, during game play, a rule resolves true, then whichever Outcomes are connected to the Success
link will be executed. If a rule resolves false, then whichever Outcomes that are connected to the Failure
link will be executed.
10. Properties; attributes of objects (either inputs or outputs). Each object has it’s own specific
11. Operators; users would be able to choose specific values for any property for any object, this allows for
programmatical control of the system.

7

2.4 Wireframes

= 1

First,
Drag die onto
workspace to

make a new rule.

Now, select Face Value from
Properties menu. Then

select equals operator and
type ‘1’ so the rule checks if

the die’s face value is 1.

Note: You are
testing to see if the
face values on two
different die both
equal 1, so you must
two different die
input devices onto
the screen (labelled
1 and 2)

Drag
another die into

rule to check for same
condition (Face Value = 1)

= 1

Check for Snake Eyes.

8

= 1

Drag the output device Screen
onto the page. Select the

`message’ property and type
the text output `Snake Eyes

have Occured’

Snake Eyes
Have

Occured!

Find the
“Success” rule

output link. From here
connect the rule to the

outcome.

9

Finally the rule is done! Your workspace should resemble the following:

= 1

Snake Eyes
Have

Occured!

10

Create a Hot Potato Game Create
new game to

begin.

Drag die onto
workspace to make a

new rule.

= 0

Select Velocity from
Properties menu. Then set Rule
to check if Velocity = 0 by
selecting the `=` operator and
typing 0. operator and typing 0.

First Objective:

Set rule to check if a player
is out of the game because
they held the hot potato for
too long.

This can be determined if the
object is not moving (veloc-
ity = 0) but it is still off the
ground (distance doesn`t =
0).

Note: Imagine the die input
device is a general object,
such as a ball.

11

Drag the same die icon onto the
workspace to create a
second rule for it, testing this time
for its position.

Select Position and set y to
equal 0 (this will tell you if
the item is on the ground)

= 0
=

= 0

Find the `Not`Operator
on the first rule`s box
and connect it to the

second.

However, you first want to test that the y-value (height) is NOT equal to 0 (indicating the object is not on the ground)...

= 0
= 0
=x

y

12

Hot Potato!
User is out of

game.
Drag the output device Screen onto
the page and create the output you
want to appear if this rule occurs;

create it so text appears saying ‘Hot
Potato! User is out of game.

= 0
=x

y
= 0

Find the
“Success” rule

output link. From here
connect the rule to the

outcome.

13

Repeat steps 2 through 3 on same work space in order to create rule to check if the game is over.

However, in step 4 connect with an ‘AND’ operator instead of the ‘NOT’
because you want to detect if both the V = 0 and y position = 0 condi-
tions are true. If both these conditions are true, then the ‘hot potato’ is
on the ground and not moving, indicating the game is over.

= 0

= 0

= 0
=x

y

= 0
=x

y

Hot Potato!
User is out of

game.

= 0

14

= 0
= 0
=x

y

Drag the output device Screen onto
the page. Choose to have the output
as a message. Enter the text “Game

Over!.”

Game Over!

Find the
“Success” rule

output link. From here
connect the rule to the

outcome.

15

= 0

= 0

= 0
=x

y

= 0
=x

y

Hot Potato!
User is out of

game.

Game Over!

All Done! Your workspace for the game ‘Hot Potato’ should now look like the below:

16

Check for Doubles and Create Positive and Negative Outcome Messages

Select Face Value from
Properties menu. Then select
the equals operator and drag
die #2 into the operators area
to indicate that you want the
face value on die#1 to equal

die #2.

=

Drag
die #1 onto

workspace to start
a new rule.

17

=

1. Drag two of the same output
device screen icons onto the page
so that you can create an output

for both positive and negative
occurances of the rule. These will

appear on the same screen.

2.
For both outcome boxes

select property type ‘Message’. For the
output box on the left make the message ‘You
have rolled doubles’. For the message on the
right, make the message ‘You did not roll

doubles’.

Find the
“Success” rule

output link. From here
connect the rule to the

first outcome.

You rolled
doubles!

You did
not roll

doubles.

18

=

Find
the “Failure” rule

output link. From here
connect the rule to the second

outcome (with the feedback
for negative occurance of

doubles).

You rolled
doubles!

You did
not roll

doubles.

Your final workspace should resemble the following:

19

3.0 Technical Specifi cations

3.1 End Users

The end user of our interface is intended to be game developers, who can be divided down into
two particular categories - designers and programmers. Designers are those involved with the
conceptual ideas such as overall concept, rules, character designs and so forth - the ideas that
drive the development of the game. Programmers may be involved in the design stage of a game
but their role is primarily for carrying out the concept into a working form.

3.2 Development

The current program that the CATGames group is using to develop programming is Max/MSP. The
reason for this decision is that Max/MSP is “a graphical development environment for music and
multimedia”(Wikipedia). Since the software was designed for interfacing with a variety of inputs
and outputs, it is a logical choice for CATGames to use for communicating between the various
input devices and output devices that it employs.

For our purposes for this course, we chose Flash to help prototype and develop our interface for a
number of reasons. Team members’ knowledge and familiarity with Flash provides quick and rapid
prototyping of interfaces and iteration of designs. Most importantly, Flash can be connected with
Max/MSP on the back-end of the development, enabling the interface to be connected to the
program. This will enable any iteration of the interface to be connected to the system, tested and
any issues regarding its integration and flow. Also, Flash is appropriate for our intended audience.

20

4.0 Security

4.1 Control Points

The main point of vulnerability is the file system. The system needs to be able to handle a developer
saving a file, loading a file, and getting what they expect out of the process, this could break down
if there are multiple users developing the same game. Another point to be aware of is version
control, that is, if a developer makes a change, they should be able to go back to a previous
iteration of the game, that way they can prototype with out worrying about whether or not new
additions will break the game.

4.2 Vulnerability

When programming games, changes can cause unintended effects. Changes to one section of the
game rules could adversely affect other parts of the game. Data loss can also occur if the system
is able to be used by multiple people at once (one programmer could overwrite a file that another
programmer has changed -- losing the original programmer’s changes).

4.3 Safeguards

Building a game repository could alleviate some of the vulnerabilities. Set up a checkout system
that forces users to check out individual files, and check in tested code when they are finished
could help to prevent errors being introduced when changes are being made to a file. If the
repository is on a remote system, this could also protect against developer system failure (the Tool
would run on the developers machine, and the repository could run on an off site server). A file
repository would also provide a versioning system, where changes that are not wanted could be
rolled back, allowing the developers to move to previous versions which may be more appropriate
than a more recent version. If the system is being used by multiple developers at once, the file
repository with a checkout system would keep multiple developers from editing the same file at the
same time, hopefully preventing data loss when both developers save their file (one overwriting the
other).

21

